Coulomb’s Law

Example: Millikan Oil-Drop Experiment

A drop of oil with a weight of 3.0 \cdot 10^{-14} \text{N} is suspended, motionless between two plates separated by 1.5 cm. The plates are charged and have a potential difference 500 V. Find change on the drop.

Draw a Picture

Rendered by


    \begin{equation*} \triangle \text{V} = 500\text{V} \end{equation*}

    \begin{equation*} \text{d} = 0.015 \text{m} (1.5 \text{cm}) \end{equation*}

    \begin{equation*} \text{W} = 3.0 \cdot 10^{-14} \text{N} \end{equation*}


    \begin{equation*} 8\text{e}^{-} = \text{? C} \end{equation*}

Draw a Free Body Diagram of Oil Drop

Rendered by

Oil Drop is stationary so the net force on the object must be zero.

    \begin{equation*} \sum \text{F}_y = 0 \end{equation*}

Sum of the forces:

    \begin{equation*} \text{F}_\text{e} - \text{W} = 0 \end{equation*}

    \begin{equation*} \text{F}_\text{e} = \text{W} \end{equation*}

note that \text{F}_\text{e} = \text{q}_{\text{e}^{-}} \cdot \text{E} and \text{E} = \frac{\triangle \text{V}}{d}

    \begin{equation*} \left( \text{q}_{\text{e}^{-}} \right) \cdot \left( \frac{\triangle \text{V}}{d} \right) = \text{W} \end{equation*}

Substitute parts of the equation

Solve for \text{q}_{\text{e}^{-}}

    \begin{equation*} \text{q}_{\text{e}^{-}} = \frac{\text{W} \cdot d}{\triangle \text{V}} \end{equation*}

Plug in numbers and solve:

    \begin{equation*} \text{q}_{\text{e}^{-}} = \frac{3.0 \cdot 10^{-14} \cdot 0.015 \text{m}}{500 \text{V}} = \boxed{9 \cdot 10^{-19} \text{C} = \text{q}_{\text{e}^{-}}} \end{equation*}