Coulomb’s Law and Law of Universal Gravitation

Given: r_e=6.38\cdot^6m
r_s=3.00\cdot10^4m
m_e=5.97\cdot10^{24}Kg
G=6.67\cdot10^{-11}\frac{N\cdotm^2}{Kg^2}
Find: orbital speed v=?
orbital period T=?

 
V=\sqrt{\frac{G\cdot m_e}{r}}
r=6.7\cdot 10^6 m + 3.00 \cdot 10^4 m = 6.41 \cdot 10^6 m
V=\sqrt{\frac{(6.67 \cdot 10^{-11} \frac{N \cdot m^2}{Kg^2} )(5.97 \cdot 10^{24}Kg)(1)}{6.41 \cdot 10^6 m}
V=7.88 \cdot 10^3 \frac{m}{s}
T=2\pi \cdot \sqrt{\frac{r^3}{6\cdot m_e}}
T=2 \pi \cdot \sqrt{\frac{(6.41 \cdot 10^3 m)^3}{(6.67 \cdot 10^{-11} \frac{N \cdot m^2}{Kg^2})(5.97 \cdot 10^{24} Kg)(1)}}
T=5110s=852 min = 1.4 hours