Estimating Half Life Computations

The half life of carbon is 5,730 years. What percentage of the carbon is left if the original carbon has been present for 35,000 years?

  • A\ =\ remaining\ carbon
  • A_{0}\ =\ original\ carbon
  • t\ =\ time\ that\ has\ passed
  • b\ =\ half\ life
  • x\ =\ #\ of\ half\ lives

half-life: 100% → 50% → 25% → 12.5% → 6.25% → 3.125% → 1.5625%

 

A=A_{0}(\frac{1}{2})^{\frac{t}{h}}

A=A_{0}(\frac{1}{2})^{x}

A=A_{0}(\frac{1}{2})^{\frac{35,000\ years}{5,730\ years}}

\frac{A}{A_{0}}=(\frac{1}{2})^{\frac{35,000}{5,730}}

\frac{A}{A_{0}}=(\frac{1}{2})^{\frac{35,000}{5,730}}

\frac{A}{A_{0}}\approx (\frac{1}{2})^{6} ← estimate

About 1.5% of the original carbon left

 

\frac{A}{A_{0}}=(\frac{1}{2})^{\frac{35,000}{5,730}}

\frac{A}{A_{0}}=1.45\%