Area of Oblique Triangles

 

 

 

 

 

 

 

given 3 sides:

A=\sqrt{s(s-a)(s-b)(s-c)}

S=\frac{1}{2}(a+b+c)

given two sides and the enclosed angle:

A=\frac{1}{2}b\cdot c\cdot sin(A)

A=\frac{1}{2}a\cdot c\cdot sin(B)

A=\frac{1}{2}a\cdot b\cdot sin(C)

Examples: Find the area of the triangle.

 

 

A=\sqrt{s(s-a)(s-b)(s-c)}

s=\frac{1}{2}(a+b+c)=\frac{1}{2}(45+51+38)=67

A=\sqrt{67(67-45)(67-51)(67-38)}

A=\sqrt{67(22)(16)(29)}=\sqrt{683936}=827\ in^{2}

 

 

 

 

A=\frac{1}{2}a\cdot b\cdot sin(c)

A=\frac{1}{2}(10)(7)\cdot sin(108\degree)

A=\frac{1}{2}(70)(0.951)

A=33.3\ cm^{2}