Pythagorean Identities

    \begin{equation*}     \sin^2 (\theta) + \cos^2 (\theta) = 1 \end{equation*}

    \begin{equation*}     \tan^2 (\theta) + 1 = \sec^2 (\theta) \end{equation*}

    \begin{equation*}     \cot^2 (\theta) + 1 = \csc^2 (\theta) \end{equation*}

Rendered by QuickLaTeX.com

    \begin{equation*}     a^2 + b^2 = c^2 \end{equation*}

    \begin{equation*} \left( \sin(\theta) \right)^2 + \left( \cos(\theta) \right)^2 = 1^2 \end{equation*}

    \begin{equation*}     \sin^2 (\theta) + \cos^2 (\theta) = 1 \end{equation*}

Example

If \tan(\theta) = -7 and \sin(\theta) > 0, find \cos(\theta).

    \begin{equation*}     \tan^2 (\theta) + 1 = \sec^2 (\theta) \end{equation*}

    \begin{equation*}     (-7)^2 + 1 = \sec^2 (\theta) \end{equation*}

    \begin{equation*}     49 + 1 = \sec^2 (\theta) \end{equation*}

    \begin{equation*}     \sqrt{50} = \sqrt{\sec^2 (\theta)} \end{equation*}

    \begin{equation*}     \pm \sqrt{50} = \sec (\theta) \end{equation*}

    \begin{equation*}     \pm \sqrt{50} = \frac{1}{\cos(\theta)} \end{equation*}

    \begin{equation*}     \pm \frac{1}{\sqrt{50}} = \frac{\cos(\theta)}{1} \end{equation*}

    \begin{equation*}     \boxed{\pm \frac{\sqrt{50}}{50} = \cos(\theta)} \end{equation*}