Basic Trig Identities

Reciprocal:

sin\theta =\frac{1}{csc\theta},\ csc\theta =\frac{1}{sin\theta}

cos\theta =\frac{1}{sec\theta},\ sec\theta =\frac{1}{cos\theta}

tan\theta =\frac{1}{cot\theta},\ cot\theta =\frac{1}{tan\theta}

Quotient:

tan\theta=\frac{sin\theta}{cos\theta}

cot\theta=\frac{cos\theta}{sin\theta}

Pythagorean:

sin^{2}\theta +cos^{2}\theta =1

tan^{2}\theta +1=sec^{2}\theta

cot^{2}\theta +1=csc^{2}\theta

 

Example:

Prove\ \frac{tan^{2}x}{1+tan^{2}x}=sin^{2}x

\frac{tan^{2}x}{sec^{2}x}=sin^{2}x

\frac{\frac{sin^{2}x}{cos^{2}x}}{sec^{2}x}=sin^{2}x

\frac{\frac{sin^{2}x}{cos^{2}x}}{\frac{1}{cos^{2}x}}=sin^{2}x

\frac{sin^{2}x}{cos^{2}x}\cdot \frac{cos^{2}x}{1}=sin^{2}x

sin^{2}x=sin^{2}x\ \checkmark