Finding Exact Values of Inverse Trig Functions

    \begin{equation*} \sin^{-1} \left( \frac{1}{2} \right) \end{equation*}

The sine of what angle is \frac{1}{2}?

    \begin{equation*} \sin \left( \frac{\pi}{6} \right) = \frac{1}{2} \end{equation*}

therefore:

    \begin{equation*} \sin^{-1} \left( \frac{1}{2} \right) = \frac{\pi}{6} \end{equation*}

\sin^{-1} restricted to \left[ -\frac{\pi}{2} \text{, } \frac{\pi}{2} \right]

Rendered by QuickLaTeX.com

\cos^{-1} restricted to \left[ 0 \text{, } \pi \right]

Rendered by QuickLaTeX.com

\tan^{-1} restricted to \left[ -\frac{\pi}{2} \text{, } \frac{\pi}{2} \right]

Rendered by QuickLaTeX.com

Example

    \begin{equation*} \cos^{-1} \left( -\frac{\sqrt{3}}{2} \right) \end{equation*}

    \begin{equation*} \cos \left( \frac{5\pi}{6} \right) = -\frac{\sqrt{3}}{2} \end{equation*}

    \begin{equation*} \cos^{-1} \left( -\frac{\sqrt{3}}{2} \right) = \frac{5\pi}{6} \end{equation*}

Rendered by QuickLaTeX.com

    \begin{equation*} \tan^{-1} \left( -\sqrt{3} \right) \end{equation*}

    \begin{equation*} \tan \left( \frac{5\pi}{3} \right) = -\sqrt{3} \end{equation*}

    \begin{equation*} \tan^{-1} \left( -\sqrt{3} \right) = \frac{5\pi}{3} \end{equation*}

Rendered by QuickLaTeX.com