Discontinuity

Determine the discontinuity at the given point and identify it as infinite, jump, or removable.

Infinite discontinuity – When a function increases or decreases indefinitely at a given point.

Example:  f(x)=\frac{1}{x^2},\ x=0\rightarrow f(0)=\frac{1}{(0)^2}=\frac{1}{0}\ undefined

 

 

 

 

 

 

 

 

 

x -0.01 -0.001 0 0.001 0.01
f(x) 1\times 10^{4}  1\times 10^{6}  1\times 10^{4} 1\times 10^{4}

 

Infinite

 

Jump discontinuity – At a given point the function on the left and the right have two distinct values.

Example:

f(x)=x^{2}-1\ if\ x>-2

f(x)=x^{2}-1\ if\ x\leq -2,\ x=-2

f(-2)=(-2)^{2}-1=4-1=3

f(-2)=(-2)-5=-7

 

 

 

 

 

 

 

 

 

x -2.1 -2.01 -2 -1.99 -1.9
f(x) -7.1 -7.01 2.96 2.61

 

Jump


Removable discontinuity
– The function is continuous except for a hole at the given point.

Example:

f(x)=\frac{x+3}{x^{2}-9},\ x=-3\ and\ x=3

f(-3)=\frac{-3+3}{(-3)^{2}-9}=\frac{0}{0}

f(3)=\frac{3+3}{(3)^{2}-9}=\frac{6}{0}

 

 

 

 

 

 

 

 

 

x -3.01 -3.001 -3 -2.999 -2.99
f(x) -0.166 -0.167 -0.167 -0.167

 

Removable, -\frac{1}{6}

 

x 2.99 2.999 3 3.001 3.01
f(x) -100 -1000 1000 100

 

Infinite