De Moivre’s Theorem

If the polar form of a complex number is x=r(cos\theta +i\cdot sin\theta), then for positive integers n. z^{n}=[r(cos\theta +i\cdot sin\theta)]^{n} or r^{n}(cos(n\theta)+i\cdot sin(n\theta)).

Example: Find (4_4i)^{6}

express in polar form

r=\sqrt{a^{2}+b^{2}}

r=\sqrt{4^{2}+4^{2}}

r=\sqrt{16+16}

r=\sqrt{32}

r=4\sqrt{2}

\theta=tan^{-1}\frac{b}{a}

\theta=tan^{-1}\frac{4}{4}

\theta=\frac{\pi}{4}

 

[4\sqrt{2}(cos\frac{\pi}{4}+i\cdot sin\frac{\pi}{4})]^{6}

(4\sqrt{2})^{6}[cos(6\frac{\pi}{4})+i\cdot sin(6\frac{\pi}{4})]

32768(cos\frac{3\pi}{2}+i\cdot sin\frac{3\pi}{2})

32768(0-1i)

-32768i