Trig Relationships and the Pythagorean Theorem

Know and use the relationship

(1)   \begin{equation*} sin^{2}(x) + cos^{2}(x) = 1\end{equation*}

(2)   \begin{equation*} sin(A) = \frac{3}{5}\quad cos(A) = \frac{4}{5}\end{equation*}

(3)   \begin{equation*} a^{2} + b^{2} = c^{2} \end{equation*}

(4)   \begin{equation*} 3^{2} + 4^{2} = 5^{2}\end{equation*}

(5)   \begin{equation*} 9 + 16 = 25 \end{equation*}

(6)   \begin{equation*} 25 = 25 \checkmark \end{equation*}

(7)   \begin{equation*}(\frac{3}{5})^{2} + (\frac{4}{5}^{2} = 1 \end{equation*}

(8)   \begin{equation*}(\frac{3^2}{5^2}) + (\frac{4^2}{5^2}) = 1 \end{equation*}

(9)   \begin{equation*} \frac{9}{25} + \frac{16}{25} = 1 \end{equation*}

(10)   \begin{equation*} 1 = 1 \checkmark \end{equation*}

(11)   \begin{equation*} sin(A) = \frac{a}{c}\quad cos(A) = \frac{b}{c} \end{equation*}

(12)   \begin{equation*} \frac{a^{2} + b^{2}}{c^{2}} = \frac{c^{2}}{c^{2}}\end{equation*}

(13)   \begin{equation*} \frac{a^{2}}{c^{2}} + \frac{b^{2}}{c^{2}}= 1 \end{equation*}

(14)   \begin{equation*} (\frac{a}{c})^{2} + (\frac{b}{c})^{2} = 1 \end{equation*}

(15)   \begin{equation*} (sin(A))^2 + (cos(A))^{2} = 1 \end{equation*}