Using Coordinate Geometry to Prove Triangles Similar

Use coordinate geometry to prove ΔABC ~ ΔADE.

    • A (0, 0), B (0, 3), C (6, 0), D (0, 5), E (10, 0)

 

 

 

 

 

 

 

 

 

If\ BC||DE,\ then\ \frac{AB}{BD}=\frac{AC}{CE}.

(x_{1},\ y_{1})\rightarrow (0,\ 3)

(x_{2},\ y_{2})\rightarrow (6,\ 0)

\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{0-3}{6-0}=\frac{-3}{6}=-\frac{1}{2}

(x_{1},\ y_{1})\rightarrow (0,\ 5)

(x_{2},\ y_{2})\rightarrow (10,\ 0)

\frac{y_{2}-y{1}}{x_{2}-x_{1}}=\frac{0-5}{10-0}=\frac{-5}{10}=-\frac{1}{2}

 

\frac{3}{2}=\frac{6}{4}

4(3)=2(6)

12=12