Finding the Equation of a Circle in the Coordinate Plane

1) Find the equation of a circle with radius = 10 and center (6, -3).

2) Find the radius and center of a circle with the equation x^{2}+y^{2}=4.

 

1) general form: (x-h)^{2}+(y-k)^{2}=r^{2}, radius = r, center = (h, k)

r = 10

h = 6

k = -3

(x-6)^{2}+(y--3)^{2}=10^{2}

(x-6)^{2}+(y+3)^{2}=100

 

2) x^{2}+y^{2}=4

(x-0)^{2}+(y-0)^{2}=4

r^{2}=4
\sqrt{r^2}=4

r=2

center=(0,0)