Deriving the Quadratic Formula

Solve: ax^{2}+bx+c=0

x^{2}+\frac{b}{a}x+\frac{c}{a}=0

x^{2}+\frac{b}{a}x+(\frac{b}{2a})^{2}=-\frac{c}{a}+(\frac{b}{2a})^{2}

(x+\frac{b}{2a})^{2}=-\frac{c}{a}+\frac{b^{2}}{4a^2}

(x+\frac{b}{2a})^{2}=-\frac{c}{a}\times\frac{4a}{4a}+\frac{b^2}{4a^2}=-\frac{4ac}{4a^2}+\frac{b^2}{4a^2}

\sqrt{(x+\frac{b}{2a})^2}=\sqrt{\frac{b^{2}-4ac}{4a^2}}

x+\frac{b}{2a}=\pm\sqrt{\frac{b^{2}-4ac}{4a^2}}

x+\frac{b}{2a}-\frac{b}{2a}=\pm\sqrt{\frac{b^{2}-4ac}{4a^2}}-\frac{b}{2a}

x=-\frac{b}{2a}\pm\frac{\sqrt{b^{2}-4ac}}{2a}

x=\frac{-b\pm\sqrt{b^{2}-4ac}}{2a}