Write Equations for Conic Sections

1. Write an equation for the parabola with vertex (1, 1) and directrix x = \frac{3}{2}.

 

 

 

 

 

 

 

 

 

opens horizontally

x=a(y-k)^{2}+h, vertex = (h, k)

x=a(y-1)^{2}+1

directrix, x=h-\frac{1}{4a}

\frac{3}{2}=1-\frac{1}{4a}

\frac{3}{2}-1=1-\frac{1}{4a}-1

\frac{1}{2}=-\frac{1}{4a}

4a(\frac{1}{2})=-1

\frac{2a}{2}=\frac{-1}{2}

a=-\frac{1}{2}

x=-\frac{1}{2}(y-1)^{2}+1

 

2. Write an equation for the circle centered at (-2. 1) with a radius of 3 units.

(x-h)^{2}+(y-k)^{2}=r^{2}, r = 3 units

(x-h)^{2}+(y-k)^{2}=3^{2}=9, h = -2, k = 1

(x--2)^{2}+(y-1)^{2}=9

(x+2)^{2}+(y-1)^{2}=9

 

3. Find me foci for the ellipse \frac{x^2}{9}+\frac{y^2}{25}=1

 

 

 

 

 

 

 

 

 

 

\frac{x^2}{b^2}+\frac{y^2}{a^2}=1

foci: (0, c), (0, -c)

c^{2}=a^{2}-b^{2}

a^{2}=25, b^{2}=9

c^{2}=25-9

c^{2}=16

\sqrt{c^2}=\sqrt{16}

c=4

foci: (0, 4), (0, -4)