Graphing Conic Sections

Graph the ellipse with the equation: \frac{(y+1)^2}{64} + \frac{(x-5)^2}{28}=1

64>28 so 64 =a^2

\frac{(y-k)^2}{a^2}+\frac{(x-h)^2}{b^2}=1

Center: (h,k)

Vertices: (h,k\pma)

Covertices: (h\pmb,k)

a^2 =64   b^2 -28

\sqrt{a^2}=\sqrt{64}   \sqrt{b^2}=\sqrt{28}

a=8     b=5.29

Graph the hyperbola with the equation: \frac{x^2}{64} - \frac{y^2}{49} =1

Length of traverse axis=2a vertices are endpoints of traverse axis

center, (0,0) l_T = 2a 64=a^2 8=a

l_T=(2)(8)=16

Endpoints: (-8,0)(8,0)