Graphing Conic Sections Given Equations

Graph the ellipse with the equation \frac{(y+1)^2}{64}+\frac{(x-5)^2}{28}=1

 

 

64 > 28 so 64 = a^2

\frac{(y-k)^2}{a^2}+\frac{(x-h)^2}{b^2}=1

center: (h, k)

vertices: (h, k ± a)

covertices: (h ± b, k)

 

 

a^{2}=64\sqrt{a^2}=\sqrt{64}a=8

b^{2}=28\sqrt{b^2}=\sqrt{28}a=5.29

vertices:

  • (5, -1+8) → (5, 7)
  • (5, -1-8) → (5, -9)

covertices:

  • (5+5.29, -1) → (10.29, -1)
  • (5-5.29, -1) → (-0.29, -1)

Center: (5, -1)

 

Graph the hyperbola with the equation \frac{x^2}{64}-\frac{y^2}{49}=1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

64 > 49 so 64 = a^e

\frac{x^2}{a^2}-\frac{y^2}{b^2}=1

length of tranverse axis = 2a

vertices are endpoints of transverse axis

center, (0, 0)

l_{t}=2a, 64=a^{2}. 8=a

l_{t}=(2)(8)=16\_  endpoints: (-8, 0), (8, 0)  asymptotes: \(y=\frac{b}{a}x, b^{2}=4a

y=\frac{7}{8}x, b=7